"Cargo-mooring" as an operating principle for molecular motors.

نویسندگان

  • Bartosz Lisowski
  • Łukasz Kuśmierz
  • Michał Żabicki
  • Martin Bier
چکیده

Navigating through an ever-changing and unsteady environment, and utilizing chemical energy, molecular motors transport the cell׳s crucial components, such as organelles and vesicles filled with neurotransmitter. They generate force and pull cargo, as they literally walk along the polymeric tracks, e.g. microtubules. What we suggest in this paper is that the motor protein is not really pulling its load. The load is subject to diffusion and the motor may be doing little else than rectifying the fluctuations, i.e. ratcheting the load׳s diffusion. Below we present a detailed model to show how such ratcheting can quantitatively account for observed data. The consequence of such a mechanism is the dependence of the transport׳s speed and efficacy not only on the motor, but also on the cargo (especially its size) and on the environment (i.e. its viscosity and structure). Current experimental works rarely provide this type of information for in vivo studies. We suggest that even small differences between assays can impact the outcome. Our results agree with those obtained in wet laboratories and provide novel insight in a molecular motor׳s functioning.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jamming of molecular motors as a tool for transport cargos along microtubules

The hopping model for cargo transport by molecular motors introduced in Refs. [12, 13] is extended in order to incorporate the movement of cargo-motor complexes (C-MC). Hopping processes in this context expresses the possibility for cargo to be exchanged between neighboring motors at a microtubule where the transport takes place. Jamming of motors is essential for cargos to execute long-range m...

متن کامل

Dynein Anchors Its mRNA Cargo after Apical Transport in the Drosophila Blastoderm Embryo

Molecular motors actively transport many types of cargo along the cytoskeleton in a wide range of organisms. One class of cargo is localized mRNAs, which are transported by myosin on actin filaments or by kinesin and dynein on microtubules. How the cargo is kept at its final intracellular destination and whether the motors are recycled after completion of transport are poorly understood. Here, ...

متن کامل

Universal bound on the efficiency of molecular motors

The thermodynamic uncertainty relation provides an inequality relating any mean current, the associated dispersion and the entropy production rate for arbitrary nonequilibrium steady states. Applying it here to a general model of a molecular motor running against an external force or torque, we show that the thermodynamic efficiency of such motors is universally bounded by an expression involvi...

متن کامل

Environmental control of microtubule-based bidirectional cargo-transport

Inside cells, various cargos are transported by teams of molecular motors. Intriguingly, the motors involved generally have opposite pulling directions, and the resulting cargo dynamics is a biased stochastic motion. It is an open question how the cell can control this bias. Here we develop a model which takes explicitly into account the elastic coupling of the cargo with each motor. We show th...

متن کامل

Analysis of non-processive molecular motor transport using renewal reward theory

We propose and analyze a mathematical model of cargo transport by non-processive molecular motors. In our model, the motors change states by random discrete events (corresponding to stepping and binding/unbinding), while the cargo position follows a stochastic differential equation (SDE) that depends on the discrete states of the motors. The resulting system for the cargo position is consequent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 374  شماره 

صفحات  -

تاریخ انتشار 2015